
Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 1

LAB MANUAL

Department of Information Technology

Chandubhai S Patel Institute of Technology

Charotar University of Science and Technology

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 2

L i s t o f E x p e r i m e n t s

Sr

No.

Practical Aim Hrs

1 Introduction to profiling in C and Implement and analyze algorithms given below 02

 1.1 Fibonacci Series(Iterative and Recursive)

 1.2 Factorial of a given number (Iterative and Recursive)

2 Implement and analyze algorithms given below.(1 Lab for 2.1, 1 Lab for 2.2 & 2.3) 04

 2.1 Bubble Sort

 2.2 Selection Sort

 2.3 Insertion Sort

3 Implement and analyze algorithms given below.(Divide and Conquer Strategy) (1 Lab

for 3.1 & 3.2, 1 Lab for 3.3)

04

 3.1 Design and implement searching algorithm to find given word from English dictionary

using minimum number of comparisons. Also find out time complexity of algorithm.

 3.2 Merge Sort

 3.3 Quick Sort

4 Implement and analyze any one (Greedy Approach) 02

 4.1 Suppose there are two persons A & B. For Given amount N, If person A wants change

for N Rupees, and suppose the person B having infinite number of coin for each value

of C, where C={c1,c2,c3,c4,c5}. Person A wants minimum number of coins from

Person B for the amount N.

Design and implement an algorithm to minimize the number of coins to make up the

given amount.

 4.2 A Burglar has just broken into the Fort! He sees himself in a room with n piles of gold dust.

Because the each pile has a different purity, each pile also has a different value (v[i]) and a

different weight (w[i]). A Burglar has a bag that can only hold W kilograms.

Given n number of piles, v={v1,v2,v3,…vn}, w={w1,w2,w3,….wn} and capacity of

bag W.

Design and implement an algorithm to get maximum piles of gold using given bag with

W capacity, Burglar is also allowed to take fractional of pile.

5 Design & Implement given problems (Greedy Approach) 04

 5.1 There are eleven Professors in a Department. Each professor wants to deliver lecture in

same day. Each professor has some time limits for lecture. Professor earns credit if and

only if lecture is arranged on or before its time limit.

Professor 1 2 3 4 5 6 7 8 9 10 11

credit 78 90 50 60 75 10 80 55 88 74 59

Lecture Limit 5 4 5 3 2 1 4 6 4 5 6

Design and implement greedy approach to schedule maximum number of lectures in the

department without and with credit.

 5.2 Design LAN topology using distributed computer and communication networks, wiring

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 3

connections, transportation networks among cities, and designing pipe capacities in

flow networks. It is intended to network five computers at a large theme park. There is

one computer in the office and one at each of the four different entrances. Cables need

to be laid to link the computers. Cable laying is expensive, so a minimum length of

cable is required.

 6 Implement and analyze given problems (Dynamic Programming) 04

 6.1 Given two integer arrays val[0..n-1] and wt[0..n-1] which represent values and weights

associated with n items respectively. Also given an integer W which represents

knapsack capacity, find out the maximum value subset of val[] such that sum of the

weights of this subset is smaller than or equal to W. You cannot break an item, either

pick the complete item, or don’t pick it (0-1 property).

 6.2 Given a sequence of matrices, find the most efficient way to multiply these matrices

together. The problem is not actually to perform the multiplications, but merely to

decide in which order to perform the multiplications.

7 Implement and analyze given problem Any one(Dynamic Programming) 02

 7.1 Find the minimum of characters to be inserted to convert it into palindrome.

 7.2 Given n dice each with m faces, numbered from 1 to m, find the number of ways to get

sum X. X is the summation of values on each face when all the dice are thrown.

8 String Matching 02

 8.1 Suppose you are given a source string S[0 ..n − 1] of length n, consisting of symbols a

and b. Suppose further that you are given a pattern string P[0 ..m − 1] of length m < n,

consisting of symbols a, b, and *, representing a pattern to be found in string S. The

symbol * is a “wild card” symbol, which matches a single symbol, either a or b. The

other symbols must match exactly. The problem is to output a sorted list M of valid

“match positions”, which are positions j in S such that pattern P matches the substring

S[j..j + |P|− 1]. For example, if S = ababbab and P = ab*, then the output M should be

[0, 2].

Implement Naive and Rabin karp algorithm to solve the problem.

9 Implement and analyze the problem 02

 9.1 Eight Queen Problem

10 Design and analyze any two (Graph) 04

 10.1 Given an undirected graph and a number m, determine if the graph can be colored with

at most m colors such that no two adjacent vertices of the graph are colored with same

color. Here coloring of a graph means assignment of colors to all vertices. Solve this

using Backtracking.

 10.2 Dinner involves a number of different tasks, shown in this directed graph. An edge

indicates that one task must be performed before another. For example, the oven must

be preheated before the bread can be baked. It should be noted that only a programmer

would consider this a complete meal.

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 4

Implement this problem to generate all the possibilites.

 10.3 Let us consider the situation of a war. In your country, there is a network of telephone

lines between 9 cities (A, B, C...H, I) i.e. the 9 cities are connected by telephone line,

which means that a message from one city to any other city can be transmitted through

the line. Like we can transfer message from city A to city B even though they are not

"directly" connected by a line. So what's the catch, everything seems fine, right?

You are the "army-general" of your country and you've to take a decision, you have to

find the city which, if damaged would incur the greatest network blockage (Considering

that damaging the city damages all the connected telephone lines in it).

Implement this situation and find out Which city would you try to protect the most and

why?

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 5

P R O C E D U R E T O F O L L O W F O R A L L

E X P E R I M E N T S

1. Analyze the problem using Running Time
1. Implement a problem in any language.
2. Measure the running time of program for at least different 5 input and make a

table of Input Size Vs Running Time.
3. Draw the graph of Input size Vs Running Time.
4. Repeat step 2 and 3 for Best Case, Average Case and Worst Case.
5. Compare the practical complexity with theoretical complexity.
6. Conclude from above graph or data table.

2. Analyze the problem using No of Instructions

1. Implement a problem in any language.
2. Count the no of instruction of the program for at least different 5 input and

make a table of Input Size Vs No of Instructions.
3. Draw the graph of Input size Vs No of Instructions.
4. Repeat step 2 and 3 for Best Case, Average Case and Worst Case.
5. Compare the practical complexity with theoretical complexity.
6. Conclude from above graph or data table.

Common Guidelines for Analysis:

1. Do not assign any counter for scanf and printf statement unless instructed

explicitly

2 Do not assign any counter for variable declaration

3 Assign a counter for variable initialization

4 Assign Counter for arithmetic operations like ADD,SUB,ASSIGN etc

5 Do not assign counter for clrscr and getch functions

6 Assign counter for if conditions

7 Assign a counter before starting of for loop for initilization of variable eg i=0

8 Assign a counter immediately in for loop for checking condition i<n

9 Assign a counter just before closing of for loop for increment of a variable i++

10 Assign 1 counter immediately after exit of for loop for false condition

11 Assign one counter for return statement just before return

12 Assign one counter for function call

13 For composite conditions assign counters based on no of conditions

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 6

E X P E R I M E N T 1

Aim: Introduction to profiling in C and Implement and analyze algorithms given
below:

1. Fibonacci Series(Iterative and Recursive)
2. GCD (Iterative and Recursive)
3. Factorial of a given number (Iterative and Recursive)
4. Matrix Addition
5. Matrix Multiplication

1. Objectives:

 To learn how to measure the time of program

 To learn how to count the no of instructions of the program

 To learn how to do analysis of program

2. Background Information:

2.1. Profiling in C:
There are different functions used to measure the time of running program respective to language.

In Turbo C for windows, there is a code block given here which is used to measure the time of
running program.

clock_t start = clock();

abs(); //function for which we want to measure the time

clock_t end = clock();

double elapsed_time = (end - start)/(double)CLOCKS_PER_SEC;

printf("Elapsed time: %.2f.\n", elapsed_time);

Here clock estimates the CPU time used by your program; that's the time the CPU has been busy
executing instructions belonging to your program. So we just have to take the difference between start
and finish time of our program. Dividing by CLOCKs_PER_SEC is used to convert the time into
seconds.

In GCC for linux, Compile the code using the -pg option to include the profiler code in the
executable, as follows:

gcc -pg gprof_test_code_svp.c

This will generate an a.out executable file. You can specify another output filename with -o. Now run
the binary with ./a.out. After executing the code, the following output will be generated:

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 7

Flat-profile generation

After successful execution of the program, it will generate the file gmon.out. Use Gprof on this file to
generate the graph:
gprof -p a.out gmon.out

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls us/call us/call name

 97.98 0.97 0.97 9601 101.03 101.03 func3

 2.02 0.99 0.02 399 50.13 50.13 func2

 0.00 0.99 0.00 1197 0.00 0.00 filegen

 0.00 0.99 0.00 399 0.00 50.13 func1

<output snipped>

This generates flat-profile analytics, where time calls are given for comparison. Indications from this

profile are:

The program took 1.46 minutes of clock time to complete. From the flat-profile, func3 consumed 0.97

seconds per call and was called 9601 times; around 101 milliseconds are spent in this function for every

call to func3. The same values in the self us/call and total us/call field indicate that the complete time

was spent on the function’s own operations, and not on the children functions.

In func1, which was the last entry presented in the profile, there is practically no time spent in itself

(self us/call) but as it calls func2, most of its time is spent there. Hence, the total us/call field shows

50.13 milliseconds — the same as that of func2.

In func2, the self us/call and total us/call field are the same — the time is spent in doing self

operations.

There is practically no time spent in the filegen function according to Gprof, as the md5sum is a

system call, which is not presented in Gprof.

So, using this, we can clearly look for bottlenecks present in the code consuming CPU time.

Call-graph profile generation

To generate a call-graph profile of the functions used in the program, use gprof with the qswitch:

gprof -q a.out gmon.out

Call graph (explanation follows)…

granularity: each sample hit covers 4 byte(s) for 1.01% of 0.99 seconds

index % time self children called name
 <spontaneous>
[1] 100.0 0.00 0.99 main [1]
 0.97 0.00 9601/9601 func3 [2]
 0.00 0.02 399/399 func1 [3]

 0.97 0.00 9601/9601 main [1]

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 8

[2] 98.0 0.97 0.00 9601 func3 [2]

 0.00 0.02 399/399 main [1]
[3] 2.0 0.00 0.02 399 func1 [3]
 0.02 0.00 399/399 func2 [4]

 0.02 0.00 399/399 func1 [3]
[4] 2.0 0.02 0.00 399 func2 [4]
 0.00 0.00 1197/1197 filegen [5]

 0.00 0.00 1197/1197 func2 [4]
[5] 0.0 0.00 0.00 1197 filegen [5]

<Output Snipped>

Indications from call-graph are:

 The number after the name indicates the index numbers. So we can see that main spends 0.99

seconds in the children waiting for func3 to complete, which is in the children field. This is

substantiated by the 0.97 seconds spent per call in the self field of func3. This is again followed up

by func1.

 Every entry has the function name in the middle of it with the same index number; i.e., main

with value 1 in index 1 field. So you can easily see the cycle for it, in Index 1 field kernel operations

calling main, then main calling func3 and so on. The same follows for the rest of the index.

 In Index 3, func1 is called by main with 399 calls; spent 0.02 time in children process (this is

substantiated by 0.02 in func2 call). func3 is directly executed from main.

 The middle line in each section is referenced by a unique index number. Above the line

indicates originating function for the function given in index number and below the line indicates

the process call forwarded to the next function. For example, in index 3 section, the call originated

from main() function to func1() and then to func2(). Here func1() has index number 3.

 <spontaneous> indicates that the parent function cannot be determined, generally due to

system-related APIs.

 A cumulative time recording implies that 98 per cent of the total time was spent in performing

func3 operations, as per index 2.

Function calls substantiate that the filegen() function is called thrice for a single call

offunc2(). func1() and func2() are called for the same time; the counter values present in the code

prove this. Counters are displayed after successful execution of the code. func1() andfunc2() functions

comprise the same timings for calculations. func3 is called for 9601 times. The call-graph gives the call-

tree data.

2.2. Fibonacci series:

1. Iterative Approach:

int iterative_fib(int n) {

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 9

 if (n <= 2) {

 return 1;

 }

 int a = 1, int b = 1, c;

 for (int i = 0; i < n - 2; ++i) {

 c = a + b;

 b = a;

 a = c;

 }

 return a;

}

2. Recursive Approach

int recursive_fib(int n) {

 if (n <= 2) {

 return 1;

 }

 return recursive_fib(n - 1) + recursive_fib(n-2);

}

Data Table:

Iterative Approach

Input Count

5 22

6 27

7 32

8 37

9 42

 Recursive Approach
Input Count

5 57

6 102

7 177

8 300

9 501

Analysis:

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 10

Conclusion:
Iterative approach is better than Recursive Approach for Fibonacci Series
2.3. GCD:

1. Iterative Approach:
int gcd (int a, int b)

{

 int c;

 while (a != 0) {

 c = a; a = b%a; b = c;

 }

 return b;

}

2. Recursive Approach:
int gcdr (int a, int b)

{

 if (a==0) return b;

 return gcdr (b%a, a);

}

Data Table:

Analysis:

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 11

Conclusion:

2.4. Factorial of a given number:

1. Iterative Approach

unsigned int iter_factorial(unsigned int n)

{

 unsigned int f = 1;

 for(unsigned int i = 1; i <= n; i++)

 {

 f *= i;

 }

 return f;

}

2. Recursive Approach

unsigned int recursive_factorial(unsigned int n)

{

 return n >= 1 ? n * recr_factorial(n-1) : 1;

}

Data Table:
Iterative
Approach
Input Count

5 18

6 21

7 24

8 27

9 30
Iterative
Approach

Input Count

5 13

6 16

7 19

8 22

9 25

Analysis:

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 12

Conclusion:

2.5. Matrix Addition:

Algorithm
Input Two matrices a and b

Output Output matrix c containing elements after addition of a and b

complexity O(n^2)

Matrix-Addition(a,b)

1 for i =1 to rows [a]

2 for j =1 to columns[a]

3 Input a[i,j];

4 Input b[i,j];

5 C[i, j] = A[i, j] + B[i, j];

6 Display C[i,j];

Program

#include<stdio.h>

#include<conio.h>

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 13

void main()

{

int i,j,a[10][10],b[10][10],c[10][10],m1,n1,m2,n2;

/* m - Number of rows

 n - Number of Columns */

clrscr();

printf("nEnter the number of Rows of Mat1 : ");

scanf ("%d",&m1);

printf("nEnter the number of Columns of Mat1 : ");

scanf ("%d",&n1);

/* Accept the Elements in m x n Matrix */

for(i=0;i<m1;i++)

 for(j=0;j<n1;j++)

 {

 printf("Enter the Element a[%d][%d] : ",i,j);

 scanf("%d",&a[i][j]);

 }

// --

printf("nEnter the number of Rows of Mat2 : ");

scanf ("%d",&m2);

printf("nEnter the number of Columns of Mat2 : ");

scanf ("%d",&n2);

/* Before accepting the Elements Check if no of

 rows and columns of both matrices is equal */

if (m1 != m2 || n1 != n2)

 {

 printf("nOrder of two matrices is not same ");

 exit(0);

 }

 // ------ Terminate Program if Orders are unequal

 // ------ exit(0) : 0 for normal Termination

/* Accept the Elements in m x n Matrix */

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 14

for(i=0;i<m2;i++)

 for(j=0;j<n2;j++)

 {

 printf("Enter the Element b[%d][%d] : ",i,j);

 scanf("%d",&b[i][j]);

 }

// --

/* Addition of two matrices */

for(i=0;i<m1;i++)

 for(j=0;j<n1;j++)

 {

 c[i][j] = a[i][j] + b[i][j] ;

 }

/* Print out the Resultant Matrix */

printf("nThe Addition of two Matrices is : n");

for(i=0;i<m1;i++)

 {

 for(j=0;j<n1;j++)

 {

 printf("%dt",c[i][j]);

 }

 printf("n");

 }

getch();

}

Data Table:

Analysis:

Conclusion:

2.6. Matrix Multiplication:

3. Input Two matrices a and b

4. Output Output matrix c containing elements after addition of a and b

5. complexity O(n^3)

6.

7. Matrix-Addition(a,b)

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 15

8. Input a[i,j];

9. Input b[i,j];

10. 1 for i =1 to rows [a]

11. 2 for j =1 to columns[a]

12. 3. for k = 1 to columns[b]

13. 4 C[i, j]+ = A[i, j] * B[i, j];

14. 5 Display C[i,j];

include "stdio.h"

main()

{

 int m1[10][10],i,j,k,m2[10][10],mult[10][10],r1,c1,r2,c2;

 printf("Enter number of rows and columns of first matrix (less than 10)\n");

 scanf("%d%d",&r1,&c1);

 printf("Enter number of rows and columns of second matrix (less than 10)\n");

 scanf("%d%d",&r2,&c2);

 if(r2==c1)

 {

 printf("Enter rows and columns of First matrix \n");

 printf("Row wise\n");

 for(i=0;i<r1;i++)

 for(j=0;j<c1;j++)

 scanf("%d",&m1[i][j]);

 printf("First Matrix is :\n");

 for(i=0;i<r1;i++)

 {

 for(j=0;j<c1;j++)

 printf("%d\t",m1[i][j]);

 printf("\n");

 }

 printf("Enter rows and columns of Second matrix \n");

 printf("Row wise\n");

 for(i=0;i<r2;i++)

 for(j=0;j<c2;j++)

 scanf("%d",&m2[i][j]);

 printf("Second Matrix is:\n");

 for(i=0;i<r2;i++)

 {

 for(j=0;j<c2;j++)

 printf("%d\t",m2[i][j]);

 printf("\n");

 }

 printf("Multiplication of the Matrices:\n");

 for(i=0;i<r1;i++)

 {

 for(j=0;j<c2;j++)

 {

 mult[i][j]=0;

 for(k=0;k<r1;k++)

 mult[i][j]+=m1[i][k]*m2[k][j];

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 16

 printf("%d\t",mult[i][j]);

 }

 printf("\n");

 }

 }

 else

 {

 printf("Matrix multiplication cannot be done");

 }

 return 0;

}

Data Table:

Analysis:

Conclusion:

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 17

E X P E R I M E N T 2

Aim: Implement and analyze algorithms given below:
1. Insertion Sort
2. Bubble Sort
3. Selection Sort

2.1 Insertion Sort

• Idea: like sorting a hand of playing cards

– Start with an empty left hand and the cards facing down on the table.

– Remove one card at a time from the table, and insert it into the correct

position in the left hand

• compare it with each of the cards already in the hand, from right to

left

– The cards held in the left hand are sorted

• these cards were originally the top cards of the pile on the table

Alg.: INSERTION-SORT(A)

 for j ← 2 to n

 do key ← A[j]

 Insert A[j] into the sorted sequence A[1 . . j -1]

 i ← j - 1

 while i > 0 and A[i] > key

 do A[i + 1] ← A[i]

 i ← i – 1

 A[i + 1] ← key

• Insertion sort – sorts the elements in place

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 18

Best case: the inner loop is never executed

Worst case: the inner loop is executed exactly j − 1 times for

every iteration of the outer loop

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 19

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 20

#include<stdio.h>

#include<conio.h>

void insertion(int [], int);

int main()

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 21

{

 int arr[30];

 int i,size;

 printf("\n\t------- Insertion sorting

using function -------\n\n");

 printf("Enter total no. of elements :

");

 scanf("%d",&size);

 for(i=0; i<size; i++)

 {

 printf("Enter %d element : ",i+1);

 scanf("%d",&arr[i]);

 }

 insertion(arr,size);

 printf("\n\t------- Insertion sorted

elements using function -------\n\n");

 for(i=0; i<size; i++)

 printf(" %d",arr[i]);

 getch();

 return 0;

}

void insertion(int arr[], int size)

{

 int i,j,tmp;

 for(i=0; i<size; i++)

 {

 for(j=i-1; j>=0; j--)

 {

 if(arr[j]>arr[j+1])

 {

 tmp=arr[j];

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 22

 arr[j]=arr[j+1];

 arr[j+1]=tmp;

 }

 else

 break;

 }

 }

}

Data Table:

Analysis:

Conclusion:

2.2 Bubble Sort

Alg.: BUBBLESORT(A)

 for i  1 to length[A]

 do for j  length[A] downto i + 1

 do if A[j] < A[j -1]

 then exchange A[j]  A[j-1]

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 23

#include <stdio.h>

void bubble_sort(long [], long);

int main()

{

 long array[100], n, c, d, swap;

 printf("Enter number of elements\n");

 scanf("%ld", &n);

 printf("Enter %ld integers\n", n);

 for (c = 0; c < n; c++)

 scanf("%ld", &array[c]);

 bubble_sort(array, n);

 printf("Sorted list in ascending order:\n");

 for (c = 0 ; c < n ; c++)

 printf("%ld\n", array[c]);

 return 0;

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 24

}

void bubble_sort(long list[], long n)

{

 long c, d, t;

 for (c = 0 ; c < (n - 1); c++)

 {

 for (d = 0 ; d < n - c - 1; d++)

 {

 if (list[d] > list[d+1])

 {

 /* Swapping */

 t = list[d];

 list[d] = list[d+1];

 list[d+1] = t;

 }

 }

 }

}

Data Table:

Analysis:

Conclusion:

2.3 Selection Sort

Alg.: SELECTION-SORT(A)

 n ← length[A]

 for j ← 1 to n - 1

 do smallest ← j

 for i ← j + 1 to n

 do if A[i] < A[smallest]

 then smallest ← i

 exchange A[j] ↔ A[smallest]

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 25

#include<stdio.h>

#include<conio.h>

void select(int n,int a[])

{

 int i=0,j=0,t=0,k=0;

 for (i=1;i<n;i++)

 {

 t=a[i];

 for(j=i-1;((j>=0)&&(t<a[j]));j--)

   
1 1 1

2

1 2 3 4 5 6 7

1 1 2

() (1) (1) (1) ()

n n n

j j j

T n c c n c n c n j c n j c n j c n n

  

  

                

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 26

 a[j+1]=a[j];

 a[j+1]=t;

 }

 printf("\n\nThe sorted list is : ");

 for(j=0;j<n;j++)

 printf("%d ",a[j]);

 return 0;

 getch();

}

 void main()

{

 int n,i=0,a[30];

 clrscr();

 printf("\nEnter how many numbers you want to sort\n");

 scanf("%d",&n);

 printf("\nEnter the numbers \n");

 for (i=0;i<n;i++)

 {

 scanf("%d",&a[i]);

 }

 select(n,a);

 getch();

}

Data Table:

Analysis:

Conclusion:

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 27

E X P E R I M E N T 3

Aim: Implement and analyze algorithms given below.(Divide and Conquer Strategy)

1. Merge Sort
2. Quick Sort
3. Binary Search

3.1 Merge Sort

Merge-Sort(A, p, r)

 if p < r then

 q¬(p+r)/2

 Merge-Sort(A, p, q)

 Merge-Sort(A, q+1, r)

 Merge(A, p, q, r)

Merge(A, p, q, r)

 Take the smallest of the two topmost elements of sequences A[p..q] and A[q+1..r] and

put into the resulting sequence. Repeat this, until both sequences are empty. Copy the

resulting sequence into A[p..r].

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 28

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 29

#include<stdio.h>

#define MAX 50

void mergeSort(int arr[],int low,int mid,int high);

void partition(int arr[],int low,int high);

int main(){

 int merge[MAX],i,n;

 printf("Enter the total number of elements: ");

 scanf("%d",&n);

 printf("Enter the elements which to be sort: ");

 for(i=0;i<n;i++){

 scanf("%d",&merge[i]);

 }

 partition(merge,0,n-1);

 printf("After merge sorting elements are: ");

 for(i=0;i<n;i++){

 printf("%d ",merge[i]);

 }

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 30

 return 0;

}

void partition(int arr[],int low,int high){

 int mid;

 if(low<high){

 mid=(low+high)/2;

 partition(arr,low,mid);

 partition(arr,mid+1,high);

 mergeSort(arr,low,mid,high);

 }

}

void mergeSort(int arr[],int low,int mid,int high){

 int i,m,k,l,temp[MAX];

 l=low;

 i=low;

 m=mid+1;

 while((l<=mid)&&(m<=high)){

 if(arr[l]<=arr[m]){

 temp[i]=arr[l];

 l++;

 }

 else{

 temp[i]=arr[m];

 m++;

 }

 i++;

 }

 if(l>mid){

 for(k=m;k<=high;k++){

 temp[i]=arr[k];

 i++;

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 31

 }

 }

 else{

 for(k=l;k<=mid;k++){

 temp[i]=arr[k];

 i++;

 }

 }

 for(k=low;k<=high;k++){

 arr[k]=temp[k];

 }

}

3.2 Quick Sort

Given an array of n elements (e.g., integers):

 If array only contains one element, return

 Else

 pick one element to use as pivot.

 Partition elements into two sub-arrays:

 Elements less than or equal to pivot

 Elements greater than pivot

 Quicksort two sub-arrays

 Return results

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 32



Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 33

 The running time of quicksort depends on the partitioning of the subarrays:

 If the subarrays are balanced, then quicksort can run as fast as mergesort.

 If they are unbalanced, then quicksort can run as slowly as insertion sort.

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 34

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 35

#include<stdio.h>

void quicksort(int [10],int,int);

int main(){

 int x[20],size,i;

 printf("Enter size of the array: ");

 scanf("%d",&size);

 printf("Enter %d elements: ",size);

 for(i=0;i<size;i++)

 scanf("%d",&x[i]);

 quicksort(x,0,size-1);

 printf("Sorted elements: ");

 for(i=0;i<size;i++)

 printf(" %d",x[i]);

 return 0;

}

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 36

void quicksort(int x[10],int first,int last){

 int pivot,j,temp,i;

 if(first<last){

 pivot=first;

 i=first;

 j=last;

 while(i<j){

 while(x[i]<=x[pivot]&&i<last)

 i++;

 while(x[j]>x[pivot])

 j--;

 if(i<j){

 temp=x[i];

 x[i]=x[j];

 x[j]=temp;

 }

 }

 temp=x[pivot];

 x[pivot]=x[j];

 x[j]=temp;

 quicksort(x,first,j-1);

 quicksort(x,j+1,last);

 }

}

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 37

3.3 Binary Search

#include<stdio.h>

int main(){

 int a[10],i,n,m,c,l,u;

 printf("Enter the size of an array: ");

 scanf("%d",&n);

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 38

 printf("Enter the elements of the array: ");

 for(i=0;i<n;i++){

 scanf("%d",&a[i]);

 }

 printf("Enter the number to be search: ");

 scanf("%d",&m);

 l=0,u=n-1;

 c=binary(a,n,m,l,u);

 if(c==0)

 printf("Number is not found.");

 else

 printf("Number is found.");

 return 0;

 }

int binary(int a[],int n,int m,int l,int u){

 int mid,c=0;

 if(l<=u){

 mid=(l+u)/2;

 if(m==a[mid]){

 c=1;

 }

 else if(m<a[mid]){

 return binary(a,n,m,l,mid-1);

 }

 else

 return binary(a,n,m,mid+1,u);

 }

 else

 return c;

}

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 39

E X P E R I M E N T 4

Aim: Implement 4.1 & 4.2 and Design any one from 4.3 to 4.4.(Greedy Approach)

1. Making Change
2. Knapsack
3. You are given n events where each takes one unit of time. Event i will provide a

profit of gi dollars (gi > 0) if started at or before time ti where ti is an arbitrary real

number. (Note: If an event is not started by ti then there is no benefit in

scheduling it at all. All events can start as early as time 0.)Give the most

efficient algorithm to find a schedule that maximizes the profit.

4. Suppose you were to drive from station Louis to Denver along I-70. Your gas

tank, when full, holds enough gas to travel m miles, and you have a map that

gives distances between gas stations along the route. Let d1<d2 <.. < dn be the

locations of all the gas stations along the route where di is the distance from

station Louis to the gas station. You can assume that the distance between

neighboring gas stations is at most m miles.

Your goal is to make as few gas stops as possible along the way. Give the most

efficient algorithm to determine at which gas stations you should stop and

prove that your strategy yields an optimal solution. Be sure to give the time

complexity of your algorithm as a function of n.

4.1 Making Change

MAKE-CHANGE (n)

 C ← {100, 25, 10, 5, 1} // constant.

 Sol ← {}; // set that will hold the solution set.

 Sum ← 0 sum of item in solution set

 WHILE sum not = n

 x = largest item in set C such that sum + x ≤ n

 IF no such item THEN

 RETURN "No Solution"

 S ← S {value of x}

 sum ← sum + x

 RETURN S

Example Make a change for 2.89 (289 cents) here n =

2.89 and the solution contains 2 dollars, 3 quarters, 1 dime

and 4 pennies. The algorithm is greedy because at every

stage it chooses the largest coin without worrying about the

consequences. Moreover, it never changes its mind in the

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 40

sense that once a coin has been included in the solution set,

it remains there.
4.2 Knapsack

 Algorithm:

o Assume knapsack holds weight W and items have value vi and

weight wi

o Rank items by value/weight ratio: vi / wi

 Thus: vi / wi ≥ vj / wj, for all i ≤ j

o Consider items in order of decreasing ratio

o Take as much of each item as possible

include<stdio.h>

include<conio.h>

void knapsack(int n, float weight[], float profit[], float

capacity)

{

 float x[20], tp= 0;

 int i, j, u;

 u=capacity;

 for (i=0;i<n;i++)

 x[i]=0.0;

 for (i=0;i<n;i++)

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 41

 {

 if(weight[i]>u)

 break;

 else

 {

 x[i]=1.0;

 tp= tp+profit[i];

 u=u-weight[i];

 }

 }

 if(i<n)

 x[i]=u/weight[i];

 tp= tp + (x[i]*profit[i]);

 printf("n The result vector is:- ");

 for(i=0;i<n;i++)

 printf("%ft",x[i]);

 printf("m Maximum profit is:- %f", tp);

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 42

}

void main()

{

 float weight[20], profit[20], capacity;

 int n, i ,j;

 float ratio[20], temp;

 clrscr();

 printf ("n Enter the no. of objects:- ");

 scanf ("%d", &num);

 printf ("n Enter the wts and profits of each object:- ");

 for (i=0; i<n; i++)

 {

 scanf("%f %f", &weight[i], &profit[i]);

 }

 printf ("n enter the capacityacity of knapsack:- ");

 scanf ("%f", &capacity);

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 43

 for (i=0; i<n; i++)

 {

 ratio[i]=profit[i]/weight[i];

 }

 for(i=0; i<n; i++)

 {

 for(j=i+1;j< n; j++)

 {

 if(ratio[i]<ratio[j])

 {

 temp= ratio[j];

 ratio[j]= ratio[i];

 ratio[i]= temp;

 temp= weight[j];

 weight[j]= weight[i];

 weight[i]= temp;

 temp= profit[j];

 profit[j]= profit[i];

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 44

 profit[i]= temp;

 }

 }

 }

 knapsack(n, weight, profit, capacity);

 getch();

}

4.3 You are given n events where each takes one unit of time. Event i will
provide a profit of gi dollars (gi > 0) if started at or before time ti where ti is an
arbitrary real number. (Note: If an event is not started by ti then there is no
benefit in scheduling it at all. All events can start as early as time 0.)Give the
most efficient algorithm to find a schedule that maximizes the profit.

4.4 Suppose you were to drive from station Louis to Denver along I-70. Your
gas tank, when full, holds enough gas to travel m miles, and you have a map
that gives distances between gas stations along the route. Let d1<d2 <.. < dn
be the locations of all the gas stations along the route where di is the distance
from station Louis to the gas station. You can assume that the distance
between neighboring gas stations is at most m miles.

Your goal is to make as few gas stops as possible along the way. Give the most
efficient algorithm to determine at which gas stations you should stop and
prove that your strategy yields an optimal solution. Be sure to give the time
complexity of your algorithm as a function of n.

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 45

E X P E R I M E N T 5

Aim: Implement 5.1 & 5.2 and Design any one from 5.3 to 5.4.(Dynamic

Programming Approach)
1. Matrix Chain Multiplication
2. Knapsack

3. Find the minimum of characters to be inserted to convert it into palindrome.

4. Given n dice each with m faces, numbered from 1 to m, find the number of ways

to get sum X. X is the summation of values on each face when all the dice are

thrown.

5.1 Matrix Chain Multiplication

Matrix-Chain(array p[1 .. n], int n) {

 Array s[1 .. n − 1, 2 .. n];

 FOR i = 1 TO n DO m[i, i] =

0; // initialize

 FOR L =

2 TO n DO { // L=length

of subchain

 FOR i = 1 TO n − L + 1 do {

 j = i + L − 1;

 m[i, j] = infinity;

 FOR k = i TO j −

1 DO { // check all splits

 q = m[i, k] + m[k + 1, j] + p[i −

1] p[k] p[j];

 IF (q < m[i, j]) {

 m[i, j] = q;

 s[i, j] = k;

 }

 }

 }

 }

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 46

 return m[1, n](final cost) and s (splitting markers);

 }

Complexity Analysis

Clearly, the space complexity of this procedure Ο(n2). Since

the tables m and s require Ο(n2) space. As far as the time

complexity is concern, a simple inspection of the for-loop(s)

structures gives us a running time of the procedure. Since,

the three for-loops are nested three deep, and each one of

them iterates at most n times (that is to say indices L, i,

and j takes on at most n − 1 values). Therefore, The running

time of this procedure is Ο(n3).

int MatrixChainOrder(int p[], int n)
{

 /* For simplicity of the program, one extra row and one extra column

are
 allocated in m[][]. 0th row and 0th column of m[][] are not used

*/
 int m[n][n];

 int i, j, k, L, q;

 /* m[i,j] = Minimum number of scalar multiplications needed to

compute
 the matrix A[i]A[i+1]...A[j] = A[i..j] where dimention of A[i] is
 p[i-1] x p[i] */

 // cost is zero when multiplying one matrix.
 for (i = 1; i < n; i++)
 m[i][i] = 0;

 // L is chain length.
 for (L=2; L<n; L++)
 {
 for (i=1; i<=n-L+1; i++)
 {
 j = i+L-1;
 m[i][j] = INT_MAX;
 for (k=i; k<=j-1; k++)
 {
 // q = cost/scalar multiplications
 q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 47

 if (q < m[i][j])
 m[i][j] = q;
 }
 }
 }

 return m[1][n-1];
}
int main()
{
 int arr[] = {1, 2, 3, 4};
 int size = sizeof(arr)/sizeof(arr[0]);

 printf("Minimum number of multiplications is %d ",
 MatrixChainOrder(arr, size));

 getchar();
 return 0;
}

5.2 Knapsack

Let i be the highest-numbered item in an optimal solution S for W pounds.

Then S` = S - {i} is an optimal solution for W - wi pounds and the value to

the solution S is Vi plus the value of the subproblem.

We can express this fact in the following formula: define c[i, w] to be the

solution for items 1,2, . . . , i and maximum weight w. Then

 0
if i = 0

or w = 0

c[i,w] = c[i-1, w] if wi ≥ 0

max

[vi + c[i-

1, w-wi], c[i-

1, w]}

if i>0

and w ≥ wi

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 48

This says that the value of the solution to i items either include ith
 item, in which

case it is vi plus a subproblem solution for (i - 1) items and the weight

excluding wi, or does not include ith
 item, in which case it is a subproblem's

solution for (i - 1) items and the same weight. That is, if the thief picks item i,

thief takes vi value, and thief can choose from itemsw - wi, and get c[i -

1, w - wi] additional value. On other hand, if thief decides not to take item i,

thief can choose from item 1,2, . . . , i- 1 upto the weight limit w, and get c[i -

1, w] value. The better of these two choices should be made.

Although the 0-1 knapsack problem, the above formula for c is similar

to LCS formula: boundary values are 0, and other values are computed from the

input and "earlier" values of c. So the 0-1 knapsack algorithm is like the LCS-

length algorithm given in CLR for finding a longest common subsequence of

two sequences.

The algorithm takes as input the maximum weight W, the number of items n, and

the two sequences v = <v1, v2, . . . , vn> and w = <w1, w2, . . . , wn>.

It stores the c[i, j]values in the table, that is, a two dimensional array, c[0 .

. n, 0 . . w] whose entries are computed in a row-major order. That is, the first

row of c is filled in from left to right, then the second row, and so on. At the end

of the computation, c[n, w] contains the maximum value that can be picked

into the knapsack.

Dynamic-0-1-knapsack (v, w, n, W)

FOR w = 0 TO W

 DO c[0, w] = 0

FOR i=1 to n

 DO c[i, 0] = 0

 FOR w=1 TO W

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 49

 DO IFf wi ≤ w

 THEN IF vi + c[i-1, w-wi]

 THEN c[i, w] = vi + c[i-1, w-wi]

 ELSE c[i, w] = c[i-1, w]

 ELSE

 c[i, w] = c[i-1, w]

Analysis

This dynamic-0-1-kanpsack algorithm takes θ(nw) times, broken up as

follows: θ(nw) times to fill the c-table, which has (n +1).(w +1) entries,

each requiring θ(1) time to compute. O(n) time to trace the solution, because

the tracing process starts in row n of the table and moves up 1 row at each step.

5.3 Find the minimum of characters to be inserted to convert it into
palindrome.

5.4 Given n dice each with m faces, numbered from 1 to m, find the number of
ways to get sum X. X is the summation of values on each face when all the dice
are thrown.

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 50

E X P E R I M E N T 6

Aim: Implement 6.1 Design any two from 6.2 to 6.4.(Graph)

1. Eight Queen Problem

2. Given an undirected graph and a number m, determine if the graph can be

colored with at most m colors such that no two adjacent vertices of the graph

are colored with same color. Here coloring of a graph means assignment of

colors to all vertices. Solve this using Backtracking.

3. Subset sum problem is to find subset of elements that are selected from a given

set whose sum adds up to a given number K. We are considering the set

contains non-negative values. It is assumed that the input set is unique (no

duplicates are presented). Solve this using Backtracking

4. In the network of PSTN if you are found the problem at the leaf level i.e. at the

telephone at your home. Apply the better approach to solve the problem from

Breadth First search and Depth First Search. Design the algorithm for it.

6.1 Eight Queen Problem

6.2 Given an undirected graph and a number m, determine if the graph can be
colored with at most m colors such that no two adjacent vertices of the graph
are colored with same color. Here coloring of a graph means assignment of
colors to all vertices. Solve this using Backtracking.

6.3 Subset sum problem is to find subset of elements that are selected from a
given set whose sum adds up to a given number K. We are considering the set
contains non-negative values. It is assumed that the input set is unique (no
duplicates are presented). Solve this using Backtracking

6.4 In the network of PSTN if you are found the problem at the leaf level i.e. at
the telephone at your home. Apply the better approach to solve the problem
from Breadth First search and Depth First Search. Design the algorithm for it.

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 51

Subject Code: IT302.01 Subject Name: Design & Analysis of Algorithm

 52

E X P E R I M E N T 7

Aim: Solve the following problems

Problem: Suppose you are playing game of shooting balloon. You expect to shoot n

balloons in the board, assuming you are sharpshooter, 100% hit. There are two scenarios,

you need find the appropriate Big Oh notation for each scenario. In these problems, one

unit of work is shooting one balloon.

1. For every 2 balloons you are able to shoot, one new balloon is inserted in the

board. So, if there were 20 balloons, after you shoot the first 2, there are 19 on

the board. After you shoot the next 2, there are 18 on the board. How many

balloons do you shoot before the board is empty?

 A: O(1)

 B: O(n)

 C: O(lgn)

 D: O(n²)

2. By the time you have shoot the first n balloons, n-1 new balloons have been

inserted on the board. After shooting those n-1 balloons, there are n-2 new

balloons are inserted on the board. After checking out those n-2 balloons , there

are n-3 new balloons on the board. This same pattern continues until on new

balloon are inserted on the board. How many total balloons do you shoot before

the board is empty?

 A: O(1)

 B: O(n)

 C: O(lgn)

 D: O(n²)

7.1 For every 2 balloons you are able to shoot, one new balloon is inserted in
the board. So, if there were 20 balloons, after you shoot the first 2, there are 19
on the board. After you shoot the next 2, there are 18 on the board. How many
balloons do you shoot before the board is empty?

7.2 By the time you have shoot the first n balloons, n-1 new balloons have been
inserted on the board. After shooting those n-1 balloons, there are n-2 new
balloons are inserted on the board. After checking out those n-2 balloons , there
are n-3 new balloons on the board. This same pattern continues until on new
balloon are inserted on the board. How many total balloons do you shoot
before the board is empty?

